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Purpose. Typical acceptance criteria for analytical methods are not chosen with regard to the concept of

method suitability and are commonly based on ad-hoc rules. Such approaches yield unknown and

uncontrolled risks of accepting unsuitable analytical methods and rejecting suitable analytical methods.

This paper proposes a formal statistical framework for the validation of analytical methods, which

incorporates the use of total error and controls the risks of incorrect decision-making.

Materials and Methods. A total error approach for method validation based on the use of two-sided

b-content tolerance intervals is proposed. The performance of the proposed approach is compared to the

performance of current ad-hoc approaches via simulation techniques.

Results. The current ad-hoc approaches for method validation fail to control the risk of incorrectly

accepting unsuitable analytical methods. The proposed total error approach controls the risk of

incorrectly accepting unsuitable analytical methods and provides adequate power to accept truly suitable

methods.

Conclusion. Current ad-hoc approaches to method validation are inconsistent with ensuring method

suitability. A total error approach based on the use of two-sided b-content tolerance intervals was

developed. The total error approach offers a formal statistical framework for assessing analytical method

performance. The approach is consistent with the concept of method suitability and controls the risk of

incorrectly accepting unsuitable analytical methods.

KEY WORDS: analysis of variance; bioanalytical assay; method validation; tolerance interval; total
error.

INTRODUCTION

Analytical methods are utilized throughout the drug
development process and the manufacturing of drug sub-
stances and drug products. Analytical results are used for
decision-making regarding, for example, bioavailability, bio-
equivalence, shelf life, and batch release. The validation of
these analytical methods is therefore critical to ensure the
safety and efficacy of pharmaceuticals. Accordingly, method
validation has been the focus of both scientific and regulatory
interest for some time.

It is commonly accepted that the goal of method
validation is to demonstrate that the method is Bsuitable^
for its intended purpose (1,2). For any analytical method,
performance characteristics which constitute desired
Bsuitability^ must be defined. Appropriately chosen accep-
tance criteria for these performance characteristics should
then ensure the suitability of the method for its intended use.

However, typical acceptance criteria for analytical
method precision and accuracy are not chosen with regard

to the concept of method suitability and are commonly based
on ad-hoc rules. For example, current pre-study acceptance
criteria for bioanalytical methods require the observed mean
to be within T15% of the nominal value and the observed
precision to be e15% coefficient of variation (%CV).
Although such ad-hoc approaches may meet regulatory
requirements (1), they yield unknown and uncontrolled risks
of rejecting suitable bioanalytical methods (producer risk)
and accepting unsuitable bioanalytical methods (consumer
risk). Moreover, such acceptance criteria are incompatible
with common recommendations for in-study acceptance
criteria.

The inadequacy of such ad-hoc acceptance criteria has
been clearly recognized (3). Alternate acceptance criteria
emphasizing the use of total error have been discussed and/or
proposed in the method validation literature (3–11). The use
of a total error criterion which incorporates both systematic
and random errors is a statistically and scientifically logical
approach. However, a formal statistical framework for the
validation of analytical methods, which incorporates the use
of total error and controls the risks of incorrect decisions, has
not yet been proposed or evaluated.

This paper proposes a total error criterion for assay
validation through the use of two-sided b-content tolerance
intervals. The performance of the proposed approach is
compared to the performance of current ad-hoc approaches
via simulation techniques. The use of the proposed approach
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is demonstrated by application to actual assay validation
data. The focus throughout will be on bioanalytical methods,
though the proposed approach is readily applicable and
relevant to other analytical methods (e.g. macromolecules,
drug substance, etc.).

MATERIALS AND METHODS

One-Way Random Effects Model

During pre-study method validation, measurements are
made over multiple independent assay runs with replicate
determinations within each run. A statistical model to
describe the measured values is given by:

Yij ¼ �þ bi þ eij

where Yij is the jth (j=1,2,...,J) replicate observation from the
ith (i=1,2,...,I) assay run, m is the true (unknown) analytical
mean for the method, bi is the random error for the ith assay
run, and eij is the random error for the jth replicate
observation from the ith assay run. The random errors bi

and eij are assumed to be normally and independently
distributed with means zero and variances �2

B and �2
E ,

respectively. These variances, �2
B and �2

E, correspond to the
between-run (inter-batch) and within-run (intra-batch) vari-
ability of the method. The total analytical variability of the
method is then given by �2

TOT ¼ �2
B þ �2

E.
The above is commonly referred to as a one-way random

effects model (12). For convenience, we assume that the data
are balanced (i.e. there are J replicates in each of the I runs).
Denote the overall mean of the measurements by Y ¼PI

i¼1

PJ
j¼1 Yij

�
IJ, and the mean for the ith assay run by Yi ¼PJ

j¼1 Yij

�
J . Table I gives the analysis of variance (ANOVA)

table for the balanced one-way random effects model (where
EMS denotes the expected mean square).

The mean squares MSB and MSE from Table I can be
used to obtain estimates of the method within-run, between-
run, and total variances. Table II gives the variance estimates
obtained from the ANOVA mean squares.

Calculation of the quantities in Tables I and II is
necessary to implement both the current ad-hoc acceptance
criteria (for proper calculation of the observed coefficient of
variation) and the proposed total error approach.

Current Acceptance Criteria

Current pre-study acceptance criteria for bioanalytical
methods require the observed mean to be within T15% of the
nominal value and the observed precision to be e15%
coefficient of variation (%CV), though these limits are both
20% at the lower limit of quantification (LLOQ). That is, Y

must be within T15% of the known nominal value, and b��TOT

must be e15% relative to the mean value.
Now consider the current acceptance criteria for in-study

monitoring: at least four of every six QC samples must be
within 15% of their respective nominal concentration (1).
Analytical runs failing this criterion must be rejected. This is
the commonly known 4-6-15 rule.

The in-study acceptance criteria used for monitoring the
method in routine use can be interpreted to define the
suitability requirements of the method for its intended use.
That is, it is reasonable to infer that a bioanalytical method is
suitable for its intended use if at least 66.7% of the observed
assay values (in the long run) are within 15% of the true
value. This is a slight oversimplification, as the properties of a
specific small sample (i.e. of six QC samples) are subject to
random variation and may be different from the true long-
run properties of the method.

Consider a method such that the true (long-run)
proportion of observed values within 15% of nominal is
exactly 0.667. Then application of the 4-6-15 rule will result in
a rejection rate of approximately 32% (i.e. 32% of future
analytical runs will be rejected). This approximate rejection
rate is based on the assumption of six independent QC
samples (and can be shown via simple binomial probability
calculations), though the actual rejection rate will differ
slightly depending on the proportion of total variability
�2

TOT

� �
due to between-run variability �2

B

� �
. The deficien-

cies of acceptance criteria such as the 4-6-15 rule are well-
known (13). However, our long run interpretation above is
likely in agreement with the original intent (if not applica-
tion) of the 4-6-15 rule.

An appropriate choice of pre-study acceptance criteria
should thus ensure that at least 66.7% of future assay values
are within 15% of the true value. That is, the pre-study
acceptance criteria should be consistent with the in-study
criteria (i.e. the intended use of the method).

Table I. Analysis of Variance Table for Balanced One-Way Random Effects Model

Source Degrees of Freedom Sums of Squares Mean Square EMS

Between-run dfB = Ij1
SSB¼ J

PI

i¼1

Yi � Y
� �2 MSB ¼ SSB=dfB J�2

B þ �2
E

Within-run dfE = I(Jj1) SSE ¼
PI

i¼1

PJ

j¼1

Yij � Yi

� �2 MSE ¼ SSE=dfE �2
E

Total dfT = IJj1 SST ¼
PI

i¼1

PJ

j¼1

Yij � Y
� �2

Table II. Estimates of Within-Run, Between-Run, and Total Variance

Variance Component Estimate

Within-run b��2
E ¼MSE

Between-run b��2
B ¼ MSB �MSEð Þ=J

Total b��2
TOT ¼ b��2

B þ b��2
E
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Figure 1 illustrates the acceptance regions defined by the
pre-study and in-study criteria, respectively (under the
assumption that observed assay values are normally distrib-
uted as given by the one-way random effects model described
earlier).

Based on the in-study acceptance criteria, truly suitable
assays have true means and coefficients of variation that lie
within the solid curve in Fig. 1. These are assays such that at
least 66.7% of observed values (in the long run) are within
15% of the true value. Truly unsuitable assays have true
means and coefficients of variation that lie outside of the
solid curve in Fig. 1. These are assays such that less than
66.7% of observed values (in the long run) are within 15% of
the true value.

The acceptance region defined by the current pre-study
criteria is given by the dashed line in Fig. 1. Assays which lie
inside this region are such that true assay bias and %CV are
each within 15%. Note that the pre-study acceptance region
is not contained within the in-study acceptance region. Thus,

some assays which are truly unsuitable (i.e. lie outside of the
solid curve in Fig. 1) may be considered suitable according to
the pre-study criteria.

Clearly, the current pre-study criteria are inconsistent
with the in-study criteria, and will not ensure method
suitability. Further, the current criteria are based on observed
estimates of bias and variability, rather than on the true
method bias and variability. The current pre-study criteria
thus do not control consumer risks. That is, decisions based
on the current pre-study criteria will result in incorrectly
accepting assays that are truly unsuitable. This will be
illustrated in the Results section.

Proposed Total Error Approach

The use of confidence intervals and/or total error in
application to method validation has been discussed or
proposed in the literature (3–11). The use of total error is a
statistically and scientifically sound approach which incorpo-
rates both systematic and random errors. A total error
approach reflects how large a measurement error can be
and is easily understood by analysts. Moreover, it is a single
comprehensive measure of method performance, rather than
an assessment of method bias and variability individually.

Ideal acceptance criteria would ensure that a high
proportion (say b%) of future observations lie within
acceptable limits (say T15% of nominal), with a high degree
of confidence (say g%). Viewed in this manner, two-sided b-
content tolerance intervals are an obvious choice.

A two-sided b-content tolerance interval is a statistical
interval (L, U) such that at least a proportion b of a
population will lie within the interval (L, U) with g%
confidence (14). Two-sided b-content tolerance intervals
provide lower (L) and upper (U) limits so that we can claim
a specified proportion b of measured assay values will lie
within the interval (L, U), with specified confidence coeffi-
cient g.

For any analytical method, we can define performance
characteristics which constitute method suitability for its
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Fig. 1. Acceptance regions defined by current in-study and pre-study

acceptance criteria. Solid curve gives current in-study acceptance

region (i.e. 66.7% of observed values within 15% of nominal value).

Dashed line gives current pre-study acceptance region (i.e. bias and

%CV each within 15%).
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intended use by appropriate choice of the proportion b and
acceptable limits (A, B). That is, a method is suitable for its
intended use if at least a proportion b of measured assay
values lie within the specified acceptance limits (A, B). Two-
sided b-content tolerance intervals provide a statistical
framework for controlling the risk of incorrectly accepting
methods that do not fulfill these suitability requirements.

The proposed total error approach is as follows:

1) Construct a two-sided b-content tolerance interval
(L, U) with desired confidence level g (say, 90%)

2) Compare the interval (L, U) to the acceptance limits
(A, B)

3) If (L, U) falls completely within (A, B), the method is
accepted; otherwise, the method is not accepted.

A similar approach incorporating the use of two-sided
b-content tolerance intervals has also been proposed for

evaluation of content uniformity (15,16). Note that this
application of tolerance intervals has the structure of a
statistical hypothesis test. The null hypothesis (H0) is that
less than a proportion b of measured assay values will fall
within the acceptance limits (A, B), while the alternative
(HA) is that at least a proportion b fall within. The proposed
total error procedure is to reject the null hypothesis (and
therefore accept the analytical method) if the two-sided
b-content tolerance interval falls completely within accep-
tance limits (A, B).

The construction of two-sided b-content tolerance inter-
vals for the balanced one-way random effects model is
straightforward and requires only the calculation of the
quantities previously described in Tables I and II, as well as
quantiles of the standard normal and chi-square distributions.
Let Z 1þbð Þ=2 be the upper 1þ bð Þ=2 quantile of the standard
normal distribution and �

2
1�g;df be the lower g quantile of the

chi-square distribution with df degrees of freedom.
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A two-sided b-content tolerance interval with confidence
coefficient g is given by (17):

Y � Z 1þbð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þN�1

e

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b��2
TOT þ H2

1 1=Jð Þ2MS2
B þH2

2 J� 1ð Þ=Jð Þ2MS2
E

n o1=2
r

ð1Þ

where

Ne ¼
I MSB þ J� 1ð ÞMSEð Þ

MSB
;

H1 ¼
dfB

�2
1�g;dfB

� 1;

and

H2 ¼
dfE

�2
1�g;dfE

� 1:

Slight modifications to Eq. 1 are suggested for unbal-
anced designs (see Appendix).

Implementation of the total error approach requires
appropriate choices of content level (b), confidence level (g)
and acceptance limits (A, B). For bioanalytical assays, we
propose that 66.7% content, 90% confidence, and T15%
acceptance limits are logical choices. That is, the total error
approach consists of constructing a two-sided b=66.7%
content, g=90% confidence tolerance interval. If the resulting
tolerance limits are completely within T15% of nominal, the
assay is accepted; otherwise, it is not.

The choice of 66.7% content with T15% acceptance
limits is the only choice consistent with the long run
interpretation of the current in-study acceptance criteria
discussed earlier. However, other choices for content level,
confidence level, and acceptance limits are clearly possible.
The deficiencies of the 4-6-15 rule noted earlier may
motivate the choice of a content level greater than 66.7%
(i.e. the 4-6-15 rule will reject approximately 32% of
analytical runs even for a method with true content level of
66.7%, as noted earlier). For example, the 4-6-15 rule will
reject approximately 10 and 5% of analytical runs for
methods with true content levels of 80 and 85% within 15%
of nominal, respectively (this can be shown via simple
binomial probability calculations). Yet such choices for
content level would likely be chosen solely to mitigate the
deficient performance of the 4-6-15 rule. A more satisfactory
alternative would be implementation of a statistically sound
procedure to replace the 4-6-15 rule for in-study monitoring.
Statistical quality control procedures (such as the Shewart
procedure) may be appropriate alternatives for such in-study
monitoring (13).

RESULTS

Current Acceptance Criteria

Consider again the acceptance region defined by the in-
study acceptance criteria, previously illustrated by the solid

curve in Fig. 1. Appropriate pre-study acceptance criteria
should control the risk of accepting assays which have true
bias and total %CV which lie on or outside this solid curve.
Pre-study acceptance criteria should ensure that the proba-
bility of accepting such assays is small, say 5%.

The performance of the current pre-study acceptance
criteria was evaluated via simulation techniques. Simulated
assay values were assumed to follow the one-way random
effects model described earlier, with normally distributed
random errors. The simulation considered various combina-
tions of true assay bias and total %CV which lie on or outside
the in-study acceptance boundary. Several sampling designs
were also considered (I=3, 6, or 9 runs with J=3 replicates per
run). The proportion (r) of total variability due to between-
run variability was assumed to be 0.50 (i.e. equal between-run
and within-run variability). For each combination of true
bias, true total %CV, and sampling design, 10,000 datasets
were simulated and the probability of passing the current
pre-study acceptance criteria was estimated. All simulations
were performed using SAS (version 8.2) software.

Figure 2 gives the probability of passing the current pre-
study acceptance criteria for assays with true bias and total
%CV which lie directly on the in-study acceptance boundary
(i.e. true bias and total %CV lie on the solid curve in Fig. 1),
for various sampling designs and fixed r=0.50. Note that
while Fig. 2 does not explicitly indicate the true total %CV, it
is implicit from Fig. 1.

The results in Fig. 2 indicate that the current acceptance
criteria have a high probability of accepting assays which lie
on the in-study acceptance boundary. This probability is
slightly greater than 50% for assays with no bias (and true
total %CV of approximately 15%), and as large as 90% for
assays with approximately T10% bias (and true total %CV of
approximately 11%).

Figure 3 gives the probability of passing the current pre-
study acceptance criteria for assays with true bias and total
%CV which lie outside the in-study acceptance boundary (i.e.
true bias and total %CV lie outside the solid curve in Fig. 1).

The results in Fig. 3 indicate that the current acceptance
criteria have an undesirably high probability of accepting
even assays which lie well beyond the in-study acceptance
boundary. For example, the probability of passing the current
acceptance criteria is over 10% even for assays with true bias
of T20% and total %CV of 15%.

Total Error Approach

The performance of the proposed tolerance interval
approach was also evaluated via simulation techniques.
Simulated assay values were assumed to follow the one-
way random effects model described earlier, with normally
distributed random errors. The simulation considered
various combinations of true assay bias and total %CV
which lie on or inside the in-study acceptance region.
Several sampling designs were considered (I=3, 6, 9, or 12
runs with J=3 replicates per run), as were several proportions
(r) of total variability due to between-run variability. For
each combination of true bias, true total %CV, sampling
design and r, 10,000 datasets were simulated and the
probability of passing the proposed tolerance interval criteria

1161Total Error for Validation of Analytical Methods



was estimated. All simulations were performed using SAS
(version 8.2) software.

Figure 4 gives the probability of passing the proposed
tolerance interval criterion for assays with true bias and total
%CV which lie directly on the in-study acceptance boundary
(i.e. true bias and total %CV lie on the solid curve in Fig. 1),
for various sampling designs and fixed r=0.50. Note that
while Fig. 4 does not explicitly indicate the true total %CV, it
is implicit from Fig. 1.

The results in Fig. 4 indicate that the tolerance interval
criterion controls the risk of accepting assays which lie on the
in-study acceptance boundary. This probability is less than
5% across the entire in-study acceptance boundary, regard-
less of sampling design.

Other values of r were also considered in the simulation
(results not shown). For all values of r considered (0.05–0.95),
the probability of passing the tolerance interval criterion is less
than 5% across the entire in-study acceptance boundary.

The tolerance interval criterion clearly controls consum-
er risk. It is also of interest to assess the producer risk
associated with the tolerance interval approach. That is, the
risk of incorrectly rejecting assays which are truly suitable.

Figure 5 gives the probability of passing the proposed
tolerance interval criterion as a function of true assay bias
and total %CV, for a (six runs, three replicate) sampling
design and fixed r=0.50. Figure 6 gives the probability of
passing the proposed tolerance interval criterion as a function
of true assay bias and total %CV, for various r and a fixed
sampling design of (six runs, three replicates). Figure 7 gives
the probability of passing the proposed tolerance interval
criterion as a function of true assay bias and total %CV, for
various sampling designs and fixed r=0.50.

The results in Fig. 5 indicate that the tolerance interval
approach has good power (Q80%) to accept assays with small
bias and total %CV of approximately 7% or less, with a
sampling design of (six runs, three replicates). As the true
total %CV increases, the power to pass the tolerance interval
criterion decreases accordingly.

Figures 6 and 7 indicate that the power of the tolerance
interval approach to accept suitable assays depends largely
on the 1) true total %CV of the assay and 2) the sampling
design. Clearly, the true assay bias also has an impact on the
power to accept suitable assays, but this impact is relatively

low unless the true bias is fairly large (>5%). The ratio r also
has some impact on the power to accept suitable assays,
though generally only for extreme values near 0 or 1 (i.e. r
values near 0 tend to increase power, while r values near 1
tend to decrease power).

With small sample sizes, such as a (three run, three
replicate) design, the power to accept suitable assays is
relatively low unless the true assay bias and total %CV are
small (e3%). However, with moderate sample sizes, the
power to accept suitable assays is reasonable. For example,
there is at least 90% power for small bias (e2%) and total
%CVe6% with a (six run, three replicate) sampling design.

Tiered or multistage sampling designs may also be
considered. That is, if the calculated tolerance interval is
not contained within the specified acceptance limits, addi-
tional analytical runs may be performed to increase the
sample size. Due to the relative conservatism of the tolerance
interval approach (i.e. false acceptance rate less than 5%), an
additional stage of sampling will not result in objectionably
high false acceptance rates. However, the overall false
acceptance rates of a multistage sampling design has not
been formally investigated here.

EXAMPLES

The proposed total error approach is illustrated by
application to data from two actual pre-study validation
experiments conducted at sanofi-aventis. The data are
calculated concentrations (ng/ml) of an analyte in human
plasma and are shown in Tables III and V. For both
examples, the sampling design consisted of six independent
runs with three replicates per run.

The proposed total error approach entails the calcula-
tion of a two-sided b-content tolerance interval with content
b=0.667 and confidence coefficient g=0.90. A method will be
judged suitable if the entire tolerance interval is within T 15%
of the nominal value.

Example 1

The data are shown in Table III. The nominal concen-
tration is 1 ng/ml. Thus, the method will be judged suitable if
the entire two-sided b-content tolerance interval is within
(0.85, 1.15) ng/ml.

Table III. Calculated Concentrations for Example No. 1 (ng/ml)

Run

Replicate 1 2 3 4 5 6

1 0.969 0.952 0.989 1.000 0.959 1.020

2 0.976 0.993 0.883 0.969 0.989 1.090

3 0.938 0.956 0.981 0.954 0.998 1.020

Table IV. Analysis of Variance Table for Example No. 1

Source

Degrees

of Freedom

Sums

of Squares

Mean

Square

Between-run dfB = 5 SSB = 0.016254 MSB = 0.003251

Within-run dfE = 12 SSE = 0.014009 MSE = 0.001167

Total dfT = 17 SST = 0.030263

Table V. Calculated Concentrations for Example No. 2 (ng/ml)

Run

Replicate 1 2 3 4 5 6

1 0.1260 0.0969 0.0888 0.0991 0.1070 0.1150

2 0.1220 0.0963 0.0958 0.0921 0.0961 0.0989

3 0.1330 0.0931 0.0945 0.0982 0.1080 0.0961

Table VI. Analysis of Variance Table for Example No. 2

Source

Degrees

of Freedom

Sums

of Squares

Mean

Square

Between-run dfB = 5 SSB = 0.002327 MSB = 0.000465

Within-run dfE = 12 SSE = 0.000422 MSE = 0.000035

Total dfT = 17 SST = 0.002749
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To calculate the interval, we construct the analysis of
variance table as previously shown in Table I. We have I=6
runs, J=3 replicates per run, and overall mean concentration
of Y ¼ 0:9798 ng

�
ml: Table IV gives the analysis of variance.

From the mean squares in Table IV, we have that b��2
TOT ¼

0:00186 and Ne=10.308. The appropriate standard normal and
chi-square quantiles can be easily obtained from tabulated
values or from a statistical software package, and are as
follows: Z0.8335=0.96809, �2

0:10;5 ¼ 1:61031; and �2
0:10;12 ¼

6:30380: From the degrees of freedom in Table IV and the
chi-square quantiles above, we have H1=2.1050 and
H2=0.9036. A two-sided b-content tolerance interval can then
be calculated using Eq. 1:

0:9798� 0:96809
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10:308�1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00186þ 2:10502 1=3ð Þ20:0032512

þ0:90362 2=3ð Þ20:0011672

( )1=2
v
u
u
t

The resulting two-sided b-content tolerance interval is
given by (0.914, 1.046) ng/ml. Equivalently, the interval is
(-8.6%, 4.6%) from the nominal concentration. Thus, the
assay performance is judged suitable at this nominal
concentration.

Note that the observed estimates of the bias and total
%CV are j2.02 and 4.40%, respectively. Since the observed
bias is within T15% of the nominal and the %CV is e15%,
the assay also passes the current acceptance criteria.

Example 2

The data are shown in Table V. The nominal concen-
tration is 0.1 ng/ml. Thus, the method will be judged suitable
if the entire two-sided b-content tolerance interval is within
(0.085, 0.115) ng/ml.

For this example, we have I=6 runs, J=3 replicates per
run, and overall mean concentration of Y ¼ 0:10316 ng

�
ml:

Table VI gives the analysis of variance.
From the mean squares in Table VI, we have that

b��2
TOT ¼ 0:000179 and Ne=6.907. The appropriate standard

normal and chi-square quantiles can be obtained as in the

above example. A two-sided b-content tolerance interval can
then be calculated using Eq. 1:

0:10316� 0:96809
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6:907�1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:000179þ 2:10502 1=3ð Þ20:0004652

þ0:90362 2=3ð Þ20:0000352

( )1=2
v
u
u
t

The resulting two-sided b-content tolerance interval is
given by (0.0799, 0.1265) ng/ml. Equivalently, the interval is
(j20.1%, 26.5%) from the nominal concentration. Thus, the
assay has failed to demonstrate suitable performance at this
nominal concentration.

Note that the observed estimates of the bias and total
%CV are 3.16 and 12.95%, respectively. Thus, the assay
passes the current acceptance criteria but fails the proposed
total error criterion.

CONCLUSION

Current pre-study acceptance criteria for the validation
of analytical methods are based on ad-hoc rules and are
inconsistent with ensuring suitable method performance. The
current criteria yield high risks of falsely accepting assays
which are truly unsuitable.

A total error approach incorporating the use of two-
sided b-content tolerance intervals is proposed. The approach
offers a formal statistical framework by which to assess
method performance. The calculation of the intervals is
straightforward and requires only quantities from a simple
analysis of variance. The proposed approach is consistent
with the concept of method suitability and controls the risk of
falsely accepting truly unsuitable assays. The approach has
good power to accept truly suitable assays with moderate
sample sizes.

APPENDIX

For sampling designs which are unbalanced (i.e. the
number of replicates is not identical for each run), slight
modifications to the tolerance interval given in Eq. 1 are
required. For unbalanced designs, the usual analysis of
variance sums of squares (given in Table I) are replaced by
unweighted sums of squares.

Let Ji be the number of replicates in the ith assay run
(i=1,2,...,I). Denote the mean for the ith assay run by
Yi ¼

PJi

j¼1 Yij

�
Ji the overall mean of the measurements by Y ¼PI

i¼1 Yi

�
I , and the harmonic mean of the replicates by JH ¼

I

�
PI

i¼1 1=Jið Þ: Table VII gives the unweighted sums of squares
for the unbalanced one-way random effects model.

Table VIII. Unweighted Sums of Squares for Unbalanced Example

No. 1 Data (Replicates 1 and 2 from Run no. 1 Missing)

Source

Degrees

of Freedom

Sums

of Squares

Mean

Square

Between-run dfB = 5 SSB = 0.015126 MSB = 0.003025

Within-run dfE = 10 SSE = 0.013191 MSE = 0.001319

Total dfT = 15 SST = 0.030119

Table VII. Unweighted Sums of Squares for Unbalanced One-Way Random Effects Model

Source

Degrees

of Freedom

Sums

of Squares

Mean

Square EMS

Between-run dfB = Ij1 SSBU ¼ JH

PI

i¼1

Yi � Y
� �2 MSBU ¼ SSBU=dfB JH�

2
B þ �2

E

Within-run dfE ¼ PI

i¼1

Ji � I SSE ¼
PI

i¼1

PJi

j¼1

Yij � Yi

� �2
MSE ¼ SSE=dfE �2

E

Total dfT ¼ PI

i¼1

Ji � 1 SST ¼
PI

i¼1

PJi

j¼1

Yij � Y
� �2
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Estimates of within-run, between-run, and total variance
are obtained as in Table II, with MSBU and JH replacing MSB

and J, respectively.

For unbalanced designs, a two-sided b-content tolerance
interval with confidence coefficient g is then given by [17]:

Y � Z 1þbð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þN�1

e

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b��2
TOT þ H2

1 1=JHð Þ2MS2
BU þH2

2 JH � 1ð Þ=JHð Þ2MS2
E

n o1=2
r

ð2Þ

where all quantities are as in Eq. 1, with MSBU and JH

replacing MSB and J, respectively.

For illustration, consider the example given earlier in
Table III. Assume the first two replicates in Run no. 1 are
missing (i.e. the values 0.969 and 0.976), resulting in an
unbalanced design. This yields an overall mean concentration
of Y ¼ 0:9759 and replicate harmonic mean of JH=2.25.
Table VIII gives the unweighted sums of squares for the
unbalanced example data.

From the unweighted mean squares in Table VIII, we have
that b��2

TOT ¼ 0:00208 and Ne=9.270. The appropriate standard
normal and chi-square quantiles can be easily obtained from
tabulated values or from a statistical software package, and are
as follows: Z0.8335=0.96809, �2

0:10;5 ¼ 1:61031, and �2
0:10;10 ¼

4:86518 . From the degrees of freedom in Table VIII and the
chi-square quantiles above, we have H1=2.1050 and H2=1.0554.
A two-sided b-content tolerance interval can then be calculated
using Eq. 2:

0:9759� 0:96809
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9:270�1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00208þ 2:10502 1=2:25ð Þ2 0:0030252þ
1:05542 1:25=2:25ð Þ2 0:0013192

( )1=2
v
u
u
t

The resulting two-sided b-content tolerance interval is
given by (0.904, 1.048) ng/ml, or (j9.6%, 4.8%) from the
nominal concentration. The assay performance is judged
suitable at this nominal concentration.
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